If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+48x-176=0
a = 5; b = 48; c = -176;
Δ = b2-4ac
Δ = 482-4·5·(-176)
Δ = 5824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5824}=\sqrt{64*91}=\sqrt{64}*\sqrt{91}=8\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{91}}{2*5}=\frac{-48-8\sqrt{91}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{91}}{2*5}=\frac{-48+8\sqrt{91}}{10} $
| -5×p=20 | | 8b+5=1+6b | | 47-x=21 | | 5m-8-12m=-2 | | z/3-3=30 | | 9x-6=6x+15 | | 1/2x3/2=7/2 | | 6/9y=6 | | 7x^2+4x-4320=0 | | 4a^2+184a-81=0 | | x/3+5-x/6+x/4=0 | | 50+x=93 | | 4=-3x=31-6x | | 0.6x+1=0.167x-7 | | 8=a/7-6 | | 4x^2=(64)^2 | | 35=13+x | | 12y+46=106 | | (x+4)(4x-3)+x=186 | | 2x^2+7x-87=0 | | 3x(3x+1)=x-6(9x-2) | | (25/4)^x=8/125 | | 16=-m | | 21=5r-9 | | X×y=-68 | | 5(3x+1)+4=x+27 | | 3(4a-12)=12 | | 2a-16=2+5 | | 2^(2x-4)=64 | | (-8+3)+(6x+3)+(9x+12)=180 | | (y+10)^2+y^2=2500 | | -8x+5=43 |